Math 2050, highlight of Week 1

1. Motivating Question:

What is the system of real numbers \mathbb{R} ?

1.1. Algebraic properties of Real numbers. We start with the algebraic properties of $(\mathbb{R}, +, \cdot)$:

- (a1) $\forall a, b \in \mathbb{R}$, we have $a + b = b + a$;
- (a2) $\forall a, b, c \in \mathbb{R}$, we have $(a + b) + c = a + (b + c)$;
- (a3) $\exists 0 \in \mathbb{R}$ such that $a + 0 = 0 + a = a$ for all $a \in \mathbb{R}$;
- (a4) $\forall a \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $a + b = b + a = 0$.
- (m1) $\forall a, b \in \mathbb{R}$, we have $a \cdot b = b \cdot a$;
- $(m2) \ \forall a, b, c \in \mathbb{R}$, we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (m3) $\exists 1 \neq 0 \in \mathbb{R}$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in \mathbb{R}$;
- (m4) $\forall a \neq 0 \in \mathbb{R}$, there exists $b \in \mathbb{R}$ such that $a \cdot b = b \cdot a = 1$.
	- (d) For all $a, b, c \in \mathbb{R}$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$.

Theorem 1.1. (uniqueness) From the algebraic properties of \mathbb{R} , we have the following uniqueness of elements:

- (i) If $a, b \in \mathbb{R}$ are elements such that $a + b = a$, then $b = 0$.
- (ii) If $a, b \in \mathbb{R}$ are elements such that $a \neq 0$ and $a \cdot b = a$, then $b=1$.
- (iii) Given $a \in \mathbb{R}$. If $b, c \in \mathbb{R}$ are such that $a + b = 1 = a + c$, then $b = c$.
- (iv) Given $0 \neq a \in \mathbb{R}$. If $b, c \in \mathbb{R}$ are such that $a \cdot b = 1 = a \cdot c$, then $b = c$.

Remark 1.1. The importance of this Theorem is that the "zero" and "identity" elements are unique. Moreover, the additive and multiplicative inverse are unique. And hence, we may use $-a$ and a^{-1} to denote the inverse respectively.

With the inverse defined, we may proceed to define the "negative" operation. Namely, the subtraction:

$$
a - b = a + (-b), \ \forall a, b \in \mathbb{R};
$$

and division:

$$
a/b = a \cdot (b^{-1}), \ \forall a, b \in \mathbb{R}, \ b \neq 0.
$$

1.2. Ordering properties of Real numbers. Next, we would like to define a ordering properties of the real number which enables us to compare elements as well as define the inequalities, distance, etc. To do this, we let $\mathbb P$ be a subset of $\mathbb R$ such that the following holds:

- (i) If $a \in \mathbb{R}$, then either $a = 0$, $a \in \mathbb{P}$ or $-a \in \mathbb{P}$;
- (ii) if $a, b \in \mathbb{P}$, then $a + b \in \mathbb{P}$;
- (iii) if $a, b \in \mathbb{P}$, then $a \cdot b \in \mathbb{P}$.

We call the set $\mathbb P$ to be set of positive numbers. With this definition, all simple inequality will hold (Check!).

With this in hand, we also define distance between $x, y \in \mathbb{R}$ by $|x-y|$ where |a| of a real number $a \in \mathbb{R}$ is given by

(1.1)
$$
|a| = \begin{cases} a, & \text{if } a \ge 0; \\ -a, & \text{if } a < 0. \end{cases}
$$

1.3. Distinction between $\mathbb R$ and $\mathbb Q$. In view of algebraic properties, we can see the necessity of improving the number systems:

- Natural number N: Fail to obey addition rule;
- Integers \mathbb{Z} : Fail to obey multiplicative rule;
- Rational number $\mathbb Q$: Satisfies all rule!

Problem raised:

Theorem 1.2. There is no $x \in \mathbb{Q}$ such that $x^2 = 2$.

1.4. Completeness of R.

Definition 1.1. Let $A \subset \mathbb{R}$ be a subset, we say that A is bounded from above if there is $M \in \mathbb{R}$ such that for all $a \in A$, $a \leq M$.

Analogously, we can define the notion of "bounded below" and "bounded". Clearly, there are no unique upper bound for a bounded set. We therefore look for the "best" one.

Definition 1.2. Given a non-empty subset $S \subset \mathbb{R}$ which is bounded from above. A real number $u = \sup S$ (the least upper bound) if

(1) u is an upper bound of S ;

(2) If v is another upper bound of S, then $v \geq u$.

Remark: by (2) , sup S is unique if exists.

The greatest lower bound (inf S) is defined analogously for nonempty subset S which is bounded from below.

The completeness of R:

For any non-empty subset S which is bounded from above, sup S exists.

Corollary 1.1. For any non-empty subset S which is bounded from below, inf S exists.

Important applications of completeness:

Theorem 1.3 (Archimedean properties). The set of natural number N is unbounded.

Another crucial consequence to our motivating question (!!!):

Theorem 1.4. There is $u \in \mathbb{R}$ such that $u^2 = 2$.

Proof. Let $A = \{a \in \mathbb{R} : a^2 < 2\}$. The set A is non-empty since $0^2 = 0 < 2$ and hence $0 \in A$. Moreover, A is bounded from above by 2 since otherwise, there is $a > 2$ such that $4 < a² < 2$ which is impossible.

Therefore, completeness implies that $u = \sup A$ exists in R. Since $1^2 = 1 < 2$, we have $u \ge 1 \in A$. We claim that $u^2 = 2$. Suppose on the contrary, we either have $u^2 < 2$ or $u^2 > 2$.

Case 1. $u^2 > 2$. We choose $\varepsilon > 0$ to be

$$
\varepsilon = \min\left\{\frac{u^2 - 2}{2u}, u\right\} > 0.
$$

By properties of sup A, there is $a \in A$ such that $0 < u - \varepsilon < a$ and hence

$$
(u - \varepsilon)^2 < a^2 < 2.
$$

But the number $v = u - \varepsilon$ satisfies

$$
v^2 = u^2 - 2\varepsilon u + \varepsilon^2 > u^2 - 2\varepsilon u > 2
$$

which is impossible.

Case 2.
$$
u^2 < 2
$$
. We choose $\varepsilon > 0$ to be
\n
$$
\varepsilon = \min\left\{1, \frac{2 - u^2}{2(2u + 1)}\right\} > 0
$$

Then the number $v = u + \varepsilon$ satisfies

$$
v^2 = u^2 + 2\varepsilon u + \varepsilon^2
$$

\n
$$
\leq u^2 + \varepsilon (2u + 1)
$$

\n
$$
\leq u^2 + \frac{2 - u^2}{2}
$$

\n
$$
< 2.
$$

Therefore, $v \in A$ and hence $u + \varepsilon \leq u$ which is impossible. \Box