
Math 2050, highlight of Week 1

1. Motivating Question:

What is the system of real numbers R?

1.1. Algebraic properties of Real numbers. We start with the
algebraic properties of (R,+, ·):

(a1) ∀a, b ∈ R, we have a + b = b + a;
(a2) ∀a, b, c ∈ R, we have (a + b) + c = a + (b + c);
(a3) ∃0 ∈ R such that a + 0 = 0 + a = a for all a ∈ R;
(a4) ∀a ∈ R, there exists b ∈ R such that a + b = b + a = 0.

(m1) ∀a, b ∈ R, we have a · b = b · a;
(m2) ∀a, b, c ∈ R, we have (a · b) · c = a · (b · c);
(m3) ∃1 6= 0 ∈ R such that a · 1 = 1 · a = a for all a ∈ R;
(m4) ∀a 6= 0 ∈ R, there exists b ∈ R such that a · b = b · a = 1.

(d) For all a, b, c ∈ R, we have a · (b + c) = a · b + a · c.

Theorem 1.1. (uniqueness) From the algebraic properties of R, we
have the following uniqueness of elements:

(i) If a, b ∈ R are elements such that a + b = a, then b = 0.
(ii) If a, b ∈ R are elements such that a 6= 0 and a · b = a, then

b = 1.
(iii) Given a ∈ R. If b, c ∈ R are such that a + b = 1 = a + c, then

b = c.
(iv) Given 0 6= a ∈ R. If b, c ∈ R are such that a · b = 1 = a · c, then

b = c.

Remark 1.1. The importance of this Theorem is that the ”zero” and
”identity” elements are unique. Moreover, the additive and multiplica-
tive inverse are unique. And hence, we may use −a and a−1 to denote
the inverse respectively.

With the inverse defined, we may proceed to define the ”negative”
operation. Namely, the subtraction:

a− b = a + (−b), ∀a, b ∈ R;

and division:

a/b = a · (b−1), ∀a, b ∈ R, b 6= 0.
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1.2. Ordering properties of Real numbers. Next, we would like
to define a ordering properties of the real number which enables us to
compare elements as well as define the inequalities, distance, etc. To
do this, we let P be a subset of R such that the following holds:

(i) If a ∈ R, then either a = 0, a ∈ P or −a ∈ P;
(ii) if a, b ∈ P, then a + b ∈ P;
(iii) if a, b ∈ P, then a · b ∈ P.

We call the set P to be set of positive numbers. With this definition,
all simple inequality will hold (Check!).

With this in hand, we also define distance between x, y ∈ R by |x−y|
where |a| of a real number a ∈ R is given by

(1.1) |a| =
{

a, if a ≥ 0;
−a, if a < 0.

1.3. Distinction between R and Q. In view of algebraic properties,
we can see the necessity of improving the number systems:

• Natural number N: Fail to obey addition rule;
• Integers Z: Fail to obey multiplicative rule;
• Rational number Q: Satisfies all rule!

Problem raised:

Theorem 1.2. There is no x ∈ Q such that x2 = 2.

1.4. Completeness of R.

Definition 1.1. Let A ⊂ R be a subset, we say that A is bounded from
above if there is M ∈ R such that for all a ∈ A, a ≤M .

Analogously, we can define the notion of ”bounded below” and ”bounded”.
Clearly, there are no unique upper bound for a bounded set. We there-
fore look for the ”best” one.

Definition 1.2. Given a non-empty subset S ⊂ R which is bounded
from above. A real number u = supS (the least upper bound) if

(1) u is an upper bound of S;
(2) If v is another upper bound of S, then v ≥ u.

Remark: by (2), supS is unique if exists.

The greatest lower bound (inf S) is defined analogously for non-
empty subset S which is bounded from below.

The completeness of R:
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For any non-empty subset S which is bounded from above, supS
exists.

Corollary 1.1. For any non-empty subset S which is bounded from
below, inf S exists.

Important applications of completeness:

Theorem 1.3 (Archimedean properties). The set of natural number
N is unbounded.

Another crucial consequence to our motivating question (!!!):

Theorem 1.4. There is u ∈ R such that u2 = 2.

Proof. Let A = {a ∈ R : a2 < 2}. The set A is non-empty since
02 = 0 < 2 and hence 0 ∈ A. Moreover, A is bounded from above
by 2 since otherwise, there is a > 2 such that 4 < a2 < 2 which is
impossible.

Therefore, completeness implies that u = supA exists in R. Since
12 = 1 < 2, we have u ≥ 1 ∈ A. We claim that u2 = 2. Suppose on
the contrary, we either have u2 < 2 or u2 > 2.

Case 1. u2 > 2. We choose ε > 0 to be

ε = min

{
u2 − 2

2u
, u

}
> 0.

By properties of supA, there is a ∈ A such that 0 < u − ε < a and
hence

(u− ε)2 < a2 < 2.

But the number v = u− ε satisfies

v2 = u2 − 2εu + ε2 > u2 − 2εu > 2

which is impossible.

Case 2. u2 < 2. We choose ε > 0 to be

ε = min

{
1,

2− u2

2(2u + 1)

}
> 0

Then the number v = u + ε satisfies

v2 = u2 + 2εu + ε2

≤ u2 + ε(2u + 1)

≤ u2 +
2− u2

2
< 2.

Therefore, v ∈ A and hence u + ε ≤ u which is impossible. �


